3,796 research outputs found

    Image Similarity Metrics in Image Registration

    Get PDF
    Measures of image similarity that inspect the intensity probability distribution of the images have proved extremely popular in image registration applications. The joint entropy of the intensity distributions and the marginal entropies of the individual images are combined to produce properties such as resistance to loss of information in one image and invariance to changes in image overlap during registration. However information theoretic cost functions are largely used empirically. This work attempts to describe image similarity measures within a formal mathematical metric framework. Redefining mutual information as a metric is shown to lead naturally to the standardised variant, normalised mutual information

    Diffeomorphic Demons using Normalised Mutual Information, Evaluation on Multi-Modal Brain MR Images

    Get PDF
    The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent large-deformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios

    Manifold learning of COPD

    Get PDF
    Analysis of CT scans for studying Chronic Obstructive Pulmonary Disease (COPD) is generally limited to mean scores of disease extent. However, the evolution of local pulmonary damage may vary between patients with discordant effects on lung physiology. This limits the explanatory power of mean values in clinical studies. We present local disease and deformation distributions to address this limitation. The disease distribution aims to quantify two aspects of parenchymal damage: locally diffuse/dense disease and global homogeneity/heterogeneity. The deformation distribution links parenchymal damage to local volume change. These distributions are exploited to quantify inter-patient differences. We used manifold learning to model variations of these distributions in 743 patients from the COPDGene study. We applied manifold fusion to combine distinct aspects of COPD into a single model. We demonstrated the utility of the distributions by comparing associations between learned embeddings and measures of severity. We also illustrated the potential to identify trajectories of disease progression in a manifold space of COPD

    Multiscale Mechano-Biological Finite Element Modelling of Oncoplastic Breast Surgery-Numerical Study towards Surgical Planning and Cosmetic Outcome Prediction

    Get PDF
    Surgical treatment for early-stage breast carcinoma primarily necessitates breast conserving therapy (BCT), where the tumour is removed while preserving the breast shape. To date, there have been very few attempts to develop accurate and efficient computational tools that could be used in the clinical environment for pre-operative planning and oncoplastic breast surgery assessment. Moreover, from the breast cancer research perspective, there has been very little effort to model complex mechano-biological processes involved in wound healing. We address this by providing an integrated numerical framework that can simulate the therapeutic effects of BCT over the extended period of treatment and recovery. A validated, three-dimensional, multiscale finite element procedure that simulates breast tissue deformations and physiological wound healing is presented. In the proposed methodology, a partitioned, continuum-based mathematical model for tissue recovery and angiogenesis, and breast tissue deformation is considered. The effectiveness and accuracy of the proposed numerical scheme is illustrated through patient-specific representative examples. Wound repair and contraction numerical analyses of real MRI-derived breast geometries are investigated, and the final predictions of the breast shape are validated against post-operative follow-up optical surface scans from four patients. Mean (standard deviation) breast surface distance errors in millimetres of 3.1 (±3.1), 3.2 (±2.4), 2.8 (±2.7) and 4.1 (±3.3) were obtained, demonstrating the ability of the surgical simulation tool to predict, pre-operatively, the outcome of BCT to clinically useful accuracy

    Registration of Untracked 2D Laparoscopic Ultrasound to CT Images of the Liver using Multi-Labelled Content-Based Image Retrieval

    Get PDF
    Laparoscopic Ultrasound (LUS) is recommended as a standard-of-care when performing laparoscopic liver resections as it images sub-surface structures such as tumours and major vessels. Given that LUS probes are difficult to handle and some tumours are iso-echoic, registration of LUS images to a pre-operative CT has been proposed as an image-guidance method. This registration problem is particularly challenging due to the small field of view of LUS, and usually depends on both a manual initialisation and tracking to compose a volume, hindering clinical translation. In this paper, we extend a proposed registration approach using Content-Based Image Retrieval (CBIR), removing the requirement for tracking or manual initialisation. Pre-operatively, a set of possible LUS planes is simulated from CT and a descriptor generated for each image. Then, a Bayesian framework is employed to estimate the most likely sequence of CT simulations that matches a series of LUS images. We extend our CBIR formulation to use multiple labelled objects and constrain the registration by separating liver vessels into portal vein and hepatic vein branches. The value of this new labeled approach is demonstrated in retrospective data from 5 patients. Results show that, by including a series of 5 untracked images in time, a single LUS image can be registered with accuracies ranging from 5.7 to 16.4 mm with a success rate of 78%. Initialisation of the LUS to CT registration with the proposed framework could potentially enable the clinical translation of these image fusion techniques

    Performance of image guided navigation in laparoscopic liver surgery – A systematic review

    Get PDF
    Background: Compared to open surgery, minimally invasive liver resection has improved short term outcomes. It is however technically more challenging. Navigated image guidance systems (IGS) are being developed to overcome these challenges. The aim of this systematic review is to provide an overview of their current capabilities and limitations. Methods: Medline, Embase and Cochrane databases were searched using free text terms and corresponding controlled vocabulary. Titles and abstracts of retrieved articles were screened for inclusion criteria. Due to the heterogeneity of the retrieved data it was not possible to conduct a meta-analysis. Therefore results are presented in tabulated and narrative format. Results: Out of 2015 articles, 17 pre-clinical and 33 clinical papers met inclusion criteria. Data from 24 articles that reported on accuracy indicates that in recent years navigation accuracy has been in the range of 8–15 mm. Due to discrepancies in evaluation methods it is difficult to compare accuracy metrics between different systems. Surgeon feedback suggests that current state of the art IGS may be useful as a supplementary navigation tool, especially in small liver lesions that are difficult to locate. They are however not able to reliably localise all relevant anatomical structures. Only one article investigated IGS impact on clinical outcomes. Conclusions: Further improvements in navigation accuracy are needed to enable reliable visualisation of tumour margins with the precision required for oncological resections. To enhance comparability between different IGS it is crucial to find a consensus on the assessment of navigation accuracy as a minimum reporting standard

    Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study

    Get PDF
    BACKGROUND AND PURPOSE: Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. MATERIAL AND METHODS: Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. RESULTS: Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. CONCLUSION: Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance

    On the Goodness-of-Fit Tests for Some Continuous Time Processes

    Full text link
    We present a review of several results concerning the construction of the Cramer-von Mises and Kolmogorov-Smirnov type goodness-of-fit tests for continuous time processes. As the models we take a stochastic differential equation with small noise, ergodic diffusion process, Poisson process and self-exciting point processes. For every model we propose the tests which provide the asymptotic size α\alpha and discuss the behaviour of the power function under local alternatives. The results of numerical simulations of the tests are presented.Comment: 22 pages, 2 figure

    Automated Classification of Breast Cancer Stroma Maturity from Histological Images

    Get PDF
    OBJECTIVE: The tumour microenvironment plays a crucial role in regulating tumour progression by a number of different mechanisms, in particular the remodelling of collagen fibres in tumour-associated stroma, which has been reported to be related to patient survival. The underlying motivation of this work is that remodelling of collagen fibres gives rise to observable patterns in Hematoxylin and Eosin (H&E) stained slides from clinical cases of invasive breast carcinoma that the pathologist can label as mature or immature stroma. The aim of this paper is to categorise and automatically classify stromal regions according to their maturity and show that this classification agrees with that of skilled observers, hence providing a repeatable and quantitative measure for prognostic studies. METHODS: We use multi-scale Basic Image Features (BIF) and Local Binary Patterns (LBP), in combination with a random decision trees classifier for classification of breast cancer stroma regions-ofinterest (ROI). RESULTS: We present results from a cohort of 55 patients with analysis of 169 ROI. Our multi-scale approach achieved a classification accuracy of 84%. CONCLUSION: This work demonstrates the ability of texture-based image analysis to differentiate breast cancer stroma maturity in clinically acquired H&E stained slides at least as well as skilled observers
    corecore